
Graph Neural Networks for the 
Travelling Salesman Problem

Chaitanya K. Joshi [1], Thomas Laurent [2], and Xavier Bresson [1]

[1] NTU, Singapore, [2] LMU, LA, USA

Boosting Combinatorial Optimization using Machine Learning

(Session at the INFORMS Annual Meeting 2019)

22nd October, 2019



Motivation

• Operations Research: solvers for NP-Hard combinatorial problems
- Backbone of modern industries such as transportation, scheduling, logistics

• Good OR solvers
- expert intuition/domain knowledge
- years of trial-and-error



Motivation

• Operations Research: solvers for NP-Hard combinatorial problems
- Backbone of modern industries such as transportation, scheduling, logistics

• Good OR solvers
- expert intuition/domain knowledge
- years of trial-and-error

“ We believe that expert intuition
can be automated and augmented

through Machine Learning ”

- Bengio, Lodi, Prouvost, 2018 [1]

[1] Bengio, Lodi, Prouvost, Machine learning for combinatorial optimization: a methodological tour d’horizon, 2018



This talk

• Advances in end-to-end learning for OR solvers
- Results on TSP: intensively studied, practical class of routing problems

• Our focus/specialty: Graph Neural Networks
- New tools for operating directly on the graph structure of problems



Our contributions

An Efficient Graph ConvNet for TSP: arxiv.org/abs/1906.01227

On Learning Paradigms for TSP: arxiv.org/abs/1910.07210

https://arxiv.org/abs/1906.01227
https://arxiv.org/abs/1910.07210


TSP as a graph problem

“Given a list of cities and the distances between each pair 
of cities, what is the shortest possible route that visits 
each city and returns to the origin city?”

• Concorde Solver [1]: leverages 30 years of research
- Cutting plane algorithms to iteratively solve linear relaxations
- Branch-and-bound to reduce solution search space

• End-to-end learning for TSP [2,3]: Proof-of-concept for learning 
previously un-encountered NP-Hard problems

[1] Applegate, Bixby, Chvátal, Cook, The traveling salesman problem: a computational study, 2006
[2] Vinyals, Fortunato, Jaitly, Pointer networks, NeurIPS 2015
[3] Bello, Pham, Le, Norouzi, Bengio, Neural combinatorial optimization with reinforcement learning, ICLR 2017



End-to-end pipeline for OR problems

1. Data

Define the
problem using
graphs

2. Embed

Obtain dense
representations
of nodes and
edges using
GNN model

3. Predict

Compute
probability of
nodes/edges
belonging to
the solution

4. Search
Enforce
feasibility and
constraints
through graph
search

5. Train

Learn prediction
policy through
imitation (SL) or
experience (RL)

This generic pipeline has been used to tackle TSP, MVC, MaxCut, MIS, VRPs, SAT, etc.



Graph Embedding: features



Graph Embedding: message passing



Graph Embedding: aggregation



Vanilla Graph ConvNets [1,2]

[1] Sukhbaatar, Szlam, Fergus, Learning multiagent communication with backpropagation, NeurIPS 2016
[2] Kipf, Welling, Semi-supervised classification with graph convolutional networks, ICLR 2017



Residual Gated Graph ConvNets [1,2]

[1] Bresson, Laurent, Residual gated graph convnets, ICLR 2018
[2] Joshi, Laurent, Bresson, An efficient graph convolutional network technique for the travelling salesman problem, arXiv 2019



Prediction: does an edge belong to the optimal tour?



Prediction: probability distribution over edges



Prediction: Non-autoregressive approach [1]

Predictions for all edges are
- produced in one shot
- independent of each other

[1] Nowak, Villar, Bandeira, Bruna, A note on learning algorithms for quadratic assignment with graph neural networks, arXiv 2017



Search for feasible solutions



Search for feasible solutions

• We can use any search algorithm for graphs + 
enforce problem constraints:

- Greedy search
- Beam search
- Monte Carlo tree search

• Analogous to search in machine translation[1]

or game playing[2]

[1] Wu et al., Google’s neural machine translation system, arXiv 2016
[2] Silver et al., Mastering the game of Go with deep neural networks and tree search, Nature 2016



Alternate: Autoregressive decoding[1] with Attention[2,3]

[1] Khalil, Dai, Zhang, Dilkina, Song, Learning combinatorial optimization algorithms over graphs, NeurIPS 2017
[2] Deudon, Cournut, Lacoste, Adulyasak, Rousseau, Learning heuristics for the tsp by policy gradient, 2018
[3] Kool, van Hoof, Welling, Attention, learn to solve routing problems!, ICLR 2019





Training the policy

Learning by Imitation (SL)

• Minimize the loss between optimal 
solutions (Concorde) and model’s 
prediction
• Binary classification problem on 

edges

Learning by Exploration (RL)

• Use REINFORCE (policy gradient) to 
minimize the length of the tour 
predicted by the model at the end 
of decoding

And there are trade-offs for both…



Experiments
Current paradigm: Models are trained and evaluated 
on TSP instances of fixed sizes: 20, 50 and 100 nodes



Performance on fixed TSP

End-to-end solvers can’t compete with OR solvers yet, but…

Performance: Supervised learning?
Speed: Non-autoregressive?



Performance on fixed TSP

Performance: Supervised learning
Speed: Non-autoregressive



For small instances, the model is able to confidently identify most of the tour edges 
in the edge probability distribution without beam search



As instance size increases, edge probability distributions reflects 
the combinatorial explosion in TSP



Beam search is essential for finding the optimal tour for more complex instances



Beam search is essential for finding the optimal tour for more complex instances

But what about
Generalization?

“…whether or not a learned policy performs 
decently on a different problem distribution” 

(in terms of structure or size)

- Bengio, Lodi, Prouvost, 2018



Generalization to variable TSP sizes

Optimality gap vs. TSP size, for NAR models when using beam search (with width = 1,280)



Generalization: impact of architecture

Optimality gap vs. TSP size, for NAR and AR models (both trained with SL)



Generalization to variable TSP sizes

Optimality gap vs. TSP size for NAR and AR models (both trained with SL)

Speed: Non-autoregressive
Generalization: Autoregressive



Generalization: impact of learning paradigm
Greedy search Sampling (1,280 solutions)

Optimality gap vs. TSP size, for AR models trained with RL and SL



Generalization: large-scale instances
Greedy search Beam search (1,280 solutions)

Optimality gap vs. TSP size, for AR models trained with RL and SL



Generalization: large-scale instances
Greedy search Beam search (1,280 solutions)

Optimality gap vs. TSP size, for AR models trained with RL and SL

Performance: Supervised learning
Generalization: Reinforcement learning

(for AR architecture)



End-to-end pipeline for OR problems

1. Data

Use variable
problem sizes for
training?

2. Embed

How to design 
scale-invariant 
GNN models?

3. Predict

Trade-offs
between AR and
NAR decoders

4. Search
Do we need
more powerful
search
algorithms?

5. Train

How to do
curriculum
learning and
finetuning?

Next steps:
Where can we innovate for better scale-invariant generalization?



Questions?

Get the slides:

chaitanya.joshi@ntu.edu.sg

chaitjo.github.io

twitter.com/chaitjo

github.com/chaitjo

mailto:chaitanya.joshi@ntu.edu.sg
https://chaitjo.github.io/
https://twitter.com/chaitjo
https://github.com/chaitjo

