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Some success stories: GNNs for RecSys

click
- - collect
— =  cart

Gender: male

—  buy

Age: 23
Location: Beijing

Price: $1000
Brand: Lenovo

Gender: female

Age: 26 Price: $800
Location: Bangalore Brand:Apple
Gender: male TR
Age: 35 —

Brand: Nike
Location: Boston

users items



o P

Alibaba.com




Another success story?
The Transformer architecture for NLP
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Semi-supervised Sequence Learning
context2Vec
Pre-trained seq2seq
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Representation Learning for NLP

RNN > Translation?

Sentiment?

Next word?

Transf.> Part-of-speech tags?




Breaking down the Transformer
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Multi-head Attention

Bad random initializations can de-stabilize the learning process of this
dot-product attention mechanism. We can ‘hedge our bets’ through

concatenating multiple attention ‘heads’:

hfﬂ — Concat(head, ..., headg) 0,

head; = Attention(@k*ghf , K k’ghf , V‘””Ehﬁ)ﬁ



Multi-head Attention
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The Final Picture

Update each word’s features through

Multi-head Attention mechanism
as a weighted sum of features of other words
in the sentence.

+ Scaling dot product attention
+ Normalization layers

+ Residual links
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The Final Picture

Update each word’s features through
Multi-head Attention mechanism

as a weighted sum of features of other words,/'

in the sentence.
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+ Scaling dot product attention,,’
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+ Residual links
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Representation Learning on Graphs

Most influential? ¥®
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Graph Neural Networks

GNNs update the hidden features h of node i at

layer € via a non-linear transformation of the node’s own
features added to the aggregation of features from each
neighbouring node j & N(i):

ht = o (U'hY + %)(thf)),
JeEN (1

where U, V are learnable weight matrices of the GNN
layer and ¢ is a non-linearity.
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Connections b/w GNNs and Transformers
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also

Consider a sentence as a fully
connected graph of words...




Connections b/w GNNs and Transformers
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GNN

Translation?

Sentiment?

Next word?

Part-of-speech tags?
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Standard GNN

GAT
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Transformer
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